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ABSTRACT

High power lasers have been adapted to material processing, energy, military and medical

applications. In the Laser Plasma Laboratory at CREOL, UCF, high power lasers are used

to produce highly ionized plasmas to generate EUV emission. This thesis examines the

quality of a recently acquired high power thin disk laser through thermal modeling and

beam parameter measurements.

High power lasers suffer from thermally induced issues which degrade their operation.

Thin disk lasers use an innovative heat extraction mechanism that eliminates the transverse

thermal gradient within the gain medium associated with thermal lensing. A thorough review

of current thin disk laser technology is described.

Several measurement techniques were performed on a high power thin disk laser. The

system efficiencies, spectrum, and temporal characteristics were examined. The laser was

characterized in the far-field regime to determine the beam quality and intensity of the laser.

Laser cavity simulations of the thin disk laser were performed using LASCAD. The

induced thermal and stress effects are demonstrated. Simulated output power and efficiency

is compared to those that have been quantified experimentally.
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CHAPTER 1

INTRODUCTION

In the year 1955, the first instance of stimulated emission was demonstrated by Charles

H. Townes [1]. Townes effectively used ammonia (NH3) to amplify microwaves. The device

was called the MASER, an acronym for microwave amplification by stimulated emission

of radiation. After such demonstration, it was speculated that producing an optical maser

would be possible. In 1958, Schawlow and Townes published a thorough theory behind optical

masers [2]. It was not until May of 1960 that the first optical maser was demonstrated by

Miaman [3]. The term LASER, an acronym for light amplification by stimulated emission

of radiation, was established as the official name for such devices. At the time, there were

no practical applications for this new laser technology.

Afterwards, different kinds of laser technologies emerged with different wavelengths and

powers. Throughout the years, scientists and engineers have adapted the use of lasers to

manufacturing processes in order to increase the efficiency and performance of the end prod-

ucts. The industrial laser materials processing industry, which yields over $1B of revenue

every year, is one of the main consumers and contributors to laser technology [4]. For in-

dustry, lasers are used for cutting, welding, and processing [5]. Lasers have also began to be

used for medicinal purposes. Some of the most common medical fields using lasers include

1
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ophthalmology [6], dentistry [7], and dermatology [8]. The biomedical laser field has emerged

by promising to simplify procedures and enhance the patient’s life and healing time. All of

the aforementioned applications require lasers of different wavelengths and power.

A market that incorporates laser technologies is the chip lithography industry. The semi-

conductor industry, which engrosses almost $200B annually, is continually exploring ways to

produce better chips [9]. The future lies on EUV technologies, which would use 13.5 nm light

to produce chips with features which are nearly half the size of today’s most advanced chips.

It is estimated that by 2014, EUV will be the predominate chip manufacturing standard

[10, 11].

The extreme ultraviolet (EUV) group in the Laser Plasma Laboratory in CREOL, UCF is

dedicated to producing high powered EUV sources for lithography. To obtain EUV radiation,

a tin compound is irradiated with a high power laser. This produces highly ionized plasma,

which generates EUV and other wavelengths. Due to the atmospheric absorption of EUV

wavelengths, the droplets are enclosed in a vacuum chamber. The EUV light from this plasma

is then collected by means of special multi-layered mirrors. These multi-layered mirrors are

made up of alternating thin film levels of high and low atomic number (Z) elements. The

mirrors used by the EUV team, which are composed of levels of Molybdenum (high Z) and

Silicon (low Z), have a maximum reflectivity of approximately 67.5% at 13.5nm [12]. The

debris that is expelled from the target due to the irradiation from a laser travels through

the chamber. If debris lands in the optics, their lifetime and reflectivity are reduced. The

EUV community experimented with solid tin, but this generated a great amount of debris.

2
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In order to extend the optics’ lifetime, the EUV group at UCF developed a mass-limited

droplet system. 30 µm diameter water droplets, doped with 1015 tin atoms are generated

within the vacuum chamber at a defined frequency. If an intense laser pulse covers the entire

droplet, the droplet can be fully ionized, causing maximum EUV emission with minimal

debris [13, 14, 15].

The EUV community has established several requirements for high volume manufactur-

ing (HVM). For maximum EUV generation from a laser produced plasma, the required laser

intensity is in the order of 1 × 1011W/cm2 [12]. HVM requires 115 W of EUV power at

intermediate focus [13]. Measurements of laser produced EUV sources have demonstrated

that near-IR lasers, most notably 1µm sources, yield a higher conversion efficiency (CE)

than lasers with other wavelengths, such as excimer and CO2 lasers [13]. To satisfy these

requirements, the EUV team at UCF has used time-multiplexed high power diode pumped

solid-state lasers. These lasers produced approximately 1.2 kW of power each with a wave-

length of 1.064µm. However, these rod based laser systems suffer greatly from thermal

problems, which affect the beam profile quality.

Thin disk lasers have emerged as a new and very efficient laser technology. This type of

laser uses a very thin laser gain media, which is typically less than 1 mm in thickness. Many

of the thermal effects that limit rod lasers can be significantly reduced due to improved heat

extraction. Because of this, thin disk lasers yield a better beam quality than conventional

rod based laser systems. Yb:YAG predominates as the gain medium used for most thin disk

lasers due to the thermal and gain characteristics of this medium [16].

3
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The EUV group has recently acquired a high powered thin disk laser. This system, the

TruMicro 7050 made by TRUMPF Laser GmbH, is efficient and reliable. Initial characteri-

zation and set up was performed in Schramberg, Germany at TRUMPF Laser GmbH. The

final characterization and modeling was performed at CREOL, UCF. This is the first laser of

its kind in the US. The TruMicro 7050 is capable of reaching continuous wave (CW) powers

beyond 1 kW or can produce 80 mJ pulses with 30 ns duration.

A thin disk lasers model was generated by using LASCAD, a laser cavity analysis and

design software made by LAS-CAD GmbH. LASCAD allows the user to simulate a laser

cavity to model laser power, energy, pulse duration, beam quality, thermal effects, material

stresses, and other factors for lasers operating in CW and pulsed lasers. At the moment,

LASCAD is not capable to simulate a laser system as complex as the Trumpf TruMicro 7050

due to several constraints. LASCAD only allows for 3 and 4-level systems and the temporal

laser behavior algorithms only works for 4-level systems. For this thesis, the model was

used to demonstrate the Trumpf cavity in the CW regime. This is critical to understanding

the constraints limiting laser performance. For EUV generation, it is necessary to produce

1 × 1011W/cm2 on target. Furthermore, a long focal length greatly simplifies the EUV

generation and collection setup. Thus, the laser must provide the highest pulse energy with

the highest possible beam quality.

4
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CHAPTER 2

THE THIN DISK LASER

This chapter is dedicated to thin disk laser technology. First, a thorough explanation

of laser fundamentals is presented, with a focus on solid state lasers. This is followed by

a description of thin disk gain media requirements. The last section discusses current thin

disk laser technology in detail.

2.1 Solid State Lasers

2.1.1 Pumping Schemes

Laser operation is established by stimulating a material causing the atoms within to emit

electromagnetic radiation. Typically, this stimulation is achieved by electrical (ie. gas lasers)

or optical pumping (ie. solid-state lasers). When the material is pumped, the atoms reach

an excited state energy level. Once energized, these particles will spontaneously decay into

a lower energy state. During this decay process, electromagnetic radiation and/or heat are

emitted. If an optical cavity is built around the gain medium, it is possible to stimulate the

transition from the upper to lower energy level and form a laser.

5
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When the first laser was introduced by Maiman in 1960, a flashlamp was used to pump

the ruby (Cr3+:Al2O3) medium. The ruby contained silver coated ends and emitted light

with a wavelength of 694.3nm [3]. Flashlamps act as blackbody emitters, emitting broadband

radiation, typically ranging from the IR into the UV range in the electromagnetic spectrum

[17]. Because of their broad emission and high energy, flashlamps have been used to optically

pump many different types of materials. Flashlamps immerse the material with their broad

spectrum, but the material only accepts the light defined by its absorption spectra, while

the rest is transformed into heat. For pumping, flashlamps are placed coplanar to the gain

material and reflectors are used to image the flashlamp into the material. Generally, they are

either air or water cooled, depending on the power consumption. Flashlamps are incapable of

being operated at repetition rates beyond 100 Hz and pose several hazards to laser operators,

such as leaked light and the high voltage necessary to ionize the internal gas.

Diode pumping has become the most predominant way to optically pump solid-state

lasers, SSLs. The ability to pump at a certain wavelength, which matches with the material’s

absorption spectrum allows for more energy to be absorbed and used to excite atoms and

less energy to go into waste [17, 18]. This, in turn, reduces the thermal stress in the solid-

state gain medium, which leads to a better beam quality. With the current diode laser

technologies, diodes provide an overall better efficiency (up to ten times better for Nd:YAG),

a longer lifetime and safer operation [18]. Since their introduction, laser output powers have

increased several orders of magnitude beyond the kW level.

6
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2.1.2 Laser Resonator

By pumping the gain media, the atoms of the crystal gain energy and reach higher energy

levels. Once these atoms are excited, some will spontaneously decay into a lower energy

level, emitting photons. In this process called spontaneous emission, photons are emitted in

all directions at random times [18]. For laser operation, the gain medium is surrounded by

mirrors which reflect these photons back into the crystal. These mirrors can be used at angles

to fold the laser resonator, making it possible to make complex laser cavities in a compact

area. If some of the spontaneously emitted photons hit the mirrors and return the media,

they are able to stimulate more atoms to produce more photons. This process is Stimulated

Emission [18]. If the gain in the cavity exceeds the losses, lasing begins. Laser cavities

range from simple cavities to complex multi element systems. The beam characteristics are

dependent on the laser cavity design, the individual cavity elements, and the laser operational

conditions in the case of thermal and non-linear effects.

As the electromagnetic (EM) wave travels through the cavity, it experiences constructive

and destructive interference with the reflected EM waves. The standing waves which result

from this effect are known as longitudinal modes. These modes affect the linewidth and

coherence of the laser. Since the typical laser’s cavity length is greater than the emitted

wavelength by many orders of magnitudes, the number of modes is large [17, 18, 19]. Trans-

verse modes represent the transverse modal distribution of a laser. These can be viewed by

looking at the transverse energy distribution (beam profile) of a laser. Transverse modes

7
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account for the beam divergence, diameter and the energy distribution of the laser beam

[17, 18, 19]. The nomenclature used to describe laser modes is TEMmnq or TEMplq, where

TEM stands for transverse electromagnetic wave; q for the longitudinal mode; and m, n, q,

and l represent the number of transverse modes. The terms m and n are used for Cartesian

coordinates and p and l are used for cylindrical coordinates. A Gaussian pulse is described

as having a TEM00 mode configuration [17, 18, 19].

When a laser resonator is unstable, rays leak out of the cavity causing loss to the corre-

sponding modes [18]. For a simple laser resonator, stability is achieved if

0 ≤ g1g2 ≤ 1 (2.1)

in which g1 = 1− L
R1

and g2 = 1− L
R2

, is satisfied [18]. This stability criterion is demonstrated

in Figure 2.1, in which the shaded area represents stable resonators [18].

Figure 2.1: Laser Resonator Stability Criterion Plot
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2.1.3 Pulse Generation

Generation of laser pulses commenced shortly after the invention of the laser in 1960. To

produce laser pulses, the feedback of the resonator is temporarily broken, allowing the pop-

ulation of the higher energy level to build up. The population can be stimulated to emit of

a laser pulse by restoring feedback. This produces peak powers of many orders of magni-

tude greater than non-pulsed lasers [20]. There are many techniques that have been used to

created pulsed lasers.

2.1.3.1 Q-Switching

Q-switching is a technique for creating laser pulses typically in the nano- and micro- second

regime. The term itself refers to switching the quality or the losses of the laser resonator.

By doing so, a large population inversion is achieved in the gain medium. There are two

types of Q-switching: passive Q-switching and active Q-switching. For passive Q-switching,

an element is introduced inside the laser cavity which causes the losses to increase once

threshold is reached. An example of a passive Q-switching is using a saturable absorber

(SA). Typical saturable absorbers consist of a dye in a solvent, a doped solid-state crystal,

or a semiconductor device [19]. The SA absorbs energy from the cavity. Once the absorber

saturates, it no longer absorbs and the associated optical losses decrease. This sort of

9
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mechanism is relatively easy to implement, but the user has no control of the pulse duration

or frequency of the laser pulses.

The other method for Q-switching is active Q-switching. For this, a controllable element is

placed inside the laser cavity. Active Q-switching typically utilizes acoustic-optic modulators

(AOM) or electro-optic modulators (EOM). The AOM works as follows: a piezo-electric

transducer causes vibrations to travel through a medium, such as quartz. Once the laser is

incident on the AOM, if the piezo is on, the laser itself will diffract off the acoustic wave.

Typically, this diffraction is enough to break the feedback of the laser resonator. AOMs are

low voltage devices that can operate over a wide range of repetition rates, but have relatively

low contrast ratio of less than 100:1.

EOMs have a higher contrast and can have much faster switching times than AOMs.

EOMs are based on the Pockels effect, in which a high voltage is applied, causing the non-

linear crystal to become birefringent. The birefriencency of the crystal is proportional to the

applied voltage [18]. To create laser pulses, the birefringence of the carefully adjusted crystal

causes the polarization of the incoming laser beam to change. One common implementation

is to pass the beam through a PC and apply a voltage which rotates the polarization by 90◦

(λ/4). If the PC is on, the beam can be expelled from the cavity by a polarizer, whereas the

beam would transmit through if the PC is off.

The main problem with Q-Switched lasers is the increase in pulse duration with an

increase in repetition rate. Increasing the repetition rate will decrease the pulse duration

and energy stabilities. It may reach a point at which laser pulses are simply not created [21].

10
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2.1.3.2 Cavity Dumping

Another type of pulse generation method is cavity dumping. This process is similar to the

Q-switching method described previously and can be done with either an AOM or an EOM.

Cavity dumping addresses most of the issues associated with Q-switching. By means of

cavity dumping, a laser system is capable of producing laser pulses at high repetition rates

with a constant pulse duration. The pulse dropout issue is eliminated for most cases. For

the EOM case, the pulse duration is limited by the cavity round trip and the PC’s high

voltage and switching speed [22].

When the laser is cavity dumped, the laser resonator consists on HR mirrors. Because

the energy is stored throughout the resonator, the system is less dependent on the material’s

gain than Q-switched lasers. The laser output itself is obtained by either displacing the laser

pulse with an AOM onto another mirror or by using an EOM, QWP, and a polarizer to

obtain the laser output through another angle of the polarizer [18, 22, 23].

2.1.4 Architecture

Solid State Lasers, SSLs, are described as lasers containing a gain media which has a crys-

talline, glass, or semiconductor based structure. After its initial demonstration, many differ-

ent types of SSLs have been demonstrated, all with different host material, crystal geometry

and pumping scheme. A brief explanation will be provided for the main SSL architectures.

11
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2.1.4.1 Rod Lasers

The first SSL geometry, which is still widely used in the laser development field is the rod

based system. The first ruby laser had this crystal geometry. This rod geometry, in which

the length is greater than the diameter, has been adapted to many different materials. Many

crystals of optical quality are grown through the Czochralski method [17, 24]. By cutting

apart excess material and polishing the sides, a crystal rod is obtained. Rods allow for side

and end pumping techniques. However, if the rod is pumped heavily, it undergoes stress

and temperature gradient dependent refractive index change that lead to thermal lensing

and birefringence [17]. While this can lead to catastrophic damage, laser performance often

suffers from significant beam quality degradation well below the threshold for optical damage.

2.1.4.2 Slab Lasers

Further research lead to development of slab shaped host materials in 1969 [25, 26]. These

have a larger surface area to pump and cool. This leads to a 1-D heat gradient in the

direction of the pumping and therefore, a reduced thermal gradient normal to the beam.

This reduces the biaxial focusing and depolarization losses which would occur for incoming

polarized light [17]. The slab gain medium design is enhanced by cutting the facets of the

crystal at Brewster’s angle. By doing so, the incoming beam refracts at the crystal surface

and transverses the slab through a zig-zag optical path [17]. The crystal acts as a waveguide

12
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and the light reflects from the polished pumping edges due to total internal reflection (TIR)

[26]. In the ideal case, the rectangular geometry reduces the stress induced birefringence and

the zig-zag path reduces the thermal and stress induced focusing. However, the inability of

maintaining the cooling constant causes thermal problems at the edges of the slab [17].

2.1.4.3 Fiber Lasers

The theory to produce fiber lasers was first published in 1960, with the demonstration of the

first fiber lasers soon after [27]. These first fiber lasers were doped with neodymium (Nd).

Fiber lasers consist of a glass host doped with rare earth ions in the gain media. Effectively,

fiber lasers are simply rod lasers with extremely high length to diameter ratios. With proper

waveguide engineering, both signal and pump beams propagate in confined areas with high

overlap, leading to highly efficient pumping. Generally, mirrors are used to reflect the light

back into the cavity, but sometimes the Fresnel reflections from the facets of the fiber are

enough to cause lasing. Given the flexibility of the fibers and the pumping schemes, these can

be cooled very efficiently and uniformly. Fiber lasers can provide very good beam qualities

at high continuous powers; however, high energy fiber lasers are difficult to achieve, since

the small core area leads to very high laser intensity which can induce nonlinear effects or

cause optical damage, even at modest energies.

13
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2.1.4.4 Active Mirror Lasers

The active mirror laser was invented the late 1960’s [28]. This type of laser consists of a gain

disk whose back coating permits pump light and prevents laser light transmission and also

incorporates an antireflective (AR) coated front face [17]. This setup allows for the uniform

and efficient pumping and extraction of laser light. This scheme and provides a high surface

area to volume ratio providing improved heat removal and diminished thermal distortions

[17]. This architecture is the basis for the thin disk laser.

2.1.4.5 Thin Disk Lasers

The thin disk laser was first demonstrated by Giesen et al. in 1993 [16, 22]. Giesen’s group

sought a way to handle the thermal stresses in a laser in a more efficient manner. The

concept behind this idea was to use a gain medium that would be thin enough to reduce

the heat problems that often lead to thermally induced lensing within the gain media. The

drawback of the design was the loss in gain due to the smaller amount of ions interacting with

the pump light. The solution to this problem was to introduce a multiple pass absorption

technique, in which the same pump light would travel through the medium multiple times

[29]. Yb:YAG was chosen as the gain medium for the thin disk laser due to its small quantum

defect, high thermal conductivity and mechanical strength, and the ability to heavily dope
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Yb to increase absorption. The rest of this chapter reviews thoroughly the main concepts

behind the thin disk laser technology.

2.2 Gain Media

2.2.1 Gain Requirements

Thin disk lasers depend on a very thin disk to achieve large gain. For efficient laser operation,

strong absorption is desired. However, the small thickness limits the pump absorption and

laser gain achievable in a single pass through a disk.

There are many different types of media that have been adapted to the thin disk design.

These include materials such as Yb:YAG [16], Nd:YAG [30], Nd:YVO4 [31], Tm:YAG [32],

Yb:KYW [33], and other crystals, typically doped with Yb. Even though a large range

of materials have been explored for thin disks, Yb:YAG still predominates. Yb:YAG has

very interesting characteristics that make it the ideal candidate for a thin disk. These

characteristics will be discussed in detail in the following sections.
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2.2.2 Yb:YAG

2.2.2.1 Energy Levels

The energy of a molecule is the summation of four different types of energy: electronic,

rotational, vibrational, and translational. All of these, except for the translational energy

contribute to possible laser action [18]. Following the Born-Oppenheimer approximation, it

has been demonstrated that electronic, rotational, and vibrational transitions account for

emissions from the UV to near-IR (up to 1µm), where as vibrational and rotational account

for Mid-IR emissions and pure rotational transitions account for Far-IR emissions [18, 34].

To get laser action, atoms which are originally in the ground state are pumped to reach a

higher energy level. Population inversion, a requirement for laser operation, is reached when

there is a higher population of ions in the upperstate than in the lower state. Naturally,

these atoms have a tendency to lose energy by non-radiative (thermal) transitions or by

spontaneously emitting light. The rate at which ions are excited must exceed the rate of

relaxation to maintain population inversion.

Lasers are described as having 3, quasi-3, and 4 energy level systems. A diagram of the

energy level systems is illustrated in Figure 2.2. A 3-level system is composed of the following

levels: the ground state, an upper state, and a relaxed state where electrons decay from the

upper state by means of thermal transitions. Emission of light, whether spontaneous or

stimulated, occurs between the relaxed and ground state. The thermal transitions are faster
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than the radiative decay. The 4-level system has a similar setup to the 3-level system, with

the addition of a relaxed state above the ground state. In this system, an ion is pumped to

an upper excited state, from which it decays non-radiatively to an intermediary upper laser

level and eventually energy is released in the form of photons. After this radiative transition,

the ion is in the laser level, from which it decays to the ground state. When the ion reaches

the ground state, it can be excited again. The quasi-3-level system is similar to the 4-level

system but the lower laser level overlaps with the ground level. 3 level and quasi-3 level

systems suffer from reabsorption, in which an emitted laser photon is absorbed by an atom

in the lower laser level at thermal equilibrium. This increases the threshold power required

for population inversion [21, 35].

3 Level 

Pump Laser 

4 Level 

Pump Laser 

Quasi-3 Level 

Pump Laser 

Figure 2.2: Energy Levels

The energy levels for Yb:YAG can be seen in Figure 2.3. The picture shows the two main

energy level manifolds: the ground state, 2F7/2, and the excited state, 2F5/2 [24, 35]. The

upward arrows between the energy level manifolds represent the peak absorption lines and

the arrows pointing down represent the peak emission lines.
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Figure 2.3: Yb:YAG Energy Levels

2.2.2.2 Upper-State Lifetime

The upper-state lifetime of the gain medium corresponds to the time the electron remains at

the upper energy state prior to its spontaneous decay. For laser action, a long upper-state

lifetime makes it easier to achieve population inversion and allows the material to store more

energy for pulsed applications[17, 19]. Generally, rare-earth doped media have relatively long

upper-state lifetimes [21]. For example, the upper-state lifetimes for Nd:YAG, Yb:YAG, and

Tm:YAG are 230, 960, and 10000 µs, respectively. In contrast, the upper-state lifetime of

well known media doped with heavy metals, such as titanium doped sapphire (Ti:sapphire)

and chromium doped lithium strontium aluminum fluoride (Cr:LiSAF) tend to be shorter

(3.2 and 67 µs, respectively) [36]
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2.2.2.3 Absorption and Emission

Absorption occurs when the atoms of the crystal are in the ground state and are optically

pumped. The manifolds corresponding to the ground state ( 2F7/2) and upper state ( 2F5/2)

were discussed in Section 2.4.2.1. The absorption spectrum for Yb:YAG is shown in Fig-

ure 2.4.a [37]. The diagram shows that Yb:YAG has absorption peaks at 941 and 968 nm,

which can be effectively pumped using an InGaAs laser diode. As previously mentioned in

Section 2.1.1, the diode’s spectrum is temperature dependent. The 18 nm absorption line at

941 nm facilitates diode pumping for a range of diode temperatures [24].
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(b) Emission Spectrum

Figure 2.4: Yb:YAG Cross Section Spectra

Emission occurs when an atoms decays to a lower energy level and releases a photon.

The photon released has a lower energy than that of the pumping photons, hence a longer

wavelength. For spontaneous emission, these photons will emit at random times and direc-

tions. Once the media is inside a laser resonator and spontaneous emission has created some

photons, the photons will stimulate more ions to emit photons coherently. The emission

spectrum for Yb:YAG can be seen in Figure 2.4b [37]. Yb:YAG has emission peaks at 1030
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and 1048 nm, with the dominant emission being at 1030 nm. The width of the main emission

peak at full width at half maximum (FWHM) is 6 nm [36].

2.2.2.4 Quantum Efficiency

Quantum efficiency (QE) is a measure of the amount of energy that is transferred from

the pump photons to the laser photons [18]. A high QE is essential for an efficient laser.

Quantum efficiency is defined as:

ηq =
hνl
hνp

=
λp
λl

(2.2)

where h is Planck’s constant, νl and λl are the frequency and wavelength of the laser re-

spectively, and νp and λp are the frequency and wavelength of the pump source. Using

Equation 2.2 [18], the quantum efficiency for a Yb:YAG laser being pumped at 941 nm and

lasing at 1030 nm is approximately 91.4%.

2.2.2.5 Quantum Defect

Quantum defect (QD) is a measure of the energy difference between the pump and the laser

emission [21]. A low QD denotes that less energy is being lost due to heat transitions and

other mechanisms [18]. The quantum defect for an Yb:YAG laser can be calculated using
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Equation 2.3 yielding 8.64%.

q =
hνp − hνl
hνp

= 1− λp
λl

(2.3)

2.2.2.6 Doping

For Yb:YAG, ytterbium (Yb3+) ions replace yttrium ions (Y3+) in yttrium aluminum gar-

nate (Y3Al15O12). Due to Yb and Y having similar atomic sizes, the concentration of Yb can

be particularly high without significantly reducing crystal quality. For Nd:YAG, the larger

neodymium (Nd3+) atoms replace Y3+, preventing the growth of optical quality crystals

with dopant concentration greater than 1.5 at.% [38]. Yb:YAG can be doped up to 30 at.%

(atomic percentage) without suffering from doping quenching [24]. Reports of up to 50 at.%

doping for Yb:YAG crystals grown through the Czochralski method have been reported by

Xu, et al. These crystals suffered concentration quenching, which caused the fluorescence

lifetime to decrease [39]. In contrast, Nd:YAG suffers from this type of quenching past 1.5

at.% doping [21]. A relatively high doping concentration is essential to achieve gain in a

thin disk due to the limited pumping volume. Typical Yb:YAG thin disk lasers operate with

doping concentrations of 9-11 at.%. A thin disk laser with a concentration of 19 at.% was

successfully demonstrated by Giesen, et al. [29].
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2.2.2.7 Cross Sections

Stimulated emission cross section (σe) is a measure of the probability that a stimulated

emission transition will occur [18]. This cross section decreases with increasing media tem-

perature, leading to the concept of cryogenically cooling gain media to obtain a high stimu-

lated emission cross section [24]. At room temperature, the typical stimulated emission cross

section for Yb:YAG is 2.1x10−20 cm2 for the laser wavelength of 1030nm [40].

Similarly, absorption cross section (σa) is a measure of the probability that absorption

will occur [18]. As the doping concentration increases, the absorption cross section increases.

For the pump wavelength, 11 at.% doped Yb:YAG’s absorption cross section is 0.77x10−20

cm2 [40]. As compared to other compounds, Yb:YAG’s CS’s are relatively small; therefore,

a multiple absorption process is used to compensate for the small gain.

2.2.2.8 Comparison to Other Gain Media

The most commonly used gain media used to date for solid-state lasers is Nd:YAG, because

it is easy to grow and very efficient for flash lamp and diode pumping. Nd:YAG provides a

lower threshold than Yb:YAG, making it easier to obtain stimulated emission with low power

pumping. As compared to Yb:YAG, its crystal structure is similar since they are based on

YAG, but it does not allow for as high a dopant concentration.
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Nd:YVO4 is very similar to Nd:YAG, especially in operating wavelengths. The main

reason why Nd:YVO4 is not as widely used is the difficulty in growing large crystals that

are suitable to make large gain media. It also has worse thermal conductivity and a lower

damage threshold. However, Nd:YVO4 has greater cross sections than Nd:YAG, thus it

experiences a higher gain. It also has a shorter upper state lifetime than both Yb:YAG and

Nd:YAG, so the peaks produced by Q-switching have lower energies, but potentially have a

smaller pulse duration [21].

A comparison of the different types of gain media which were mentioned previously is

summarized in Table 2.1 [17, 18, 36, 40, 41].

Table 2.1: Comparison of Different Thin Disk Laser Gain Media’s Characteristics at Room
Temperature

Medium Yb:YAG Nd:YAG Nd:YVO4 Tm:YAG Yb:KYW

Emission Wavelength (nm) 1030 1064 1064 2020 1025
Absorption Wavelength (nm) 941 807.5 808.5 785 981

Quantum Defect (%) 8.64 24.11 24.01 61.1 4.3
Quantum Efficiency (%) 91.4 78.4 78.5 38.9 95.7

Energy Level Type Quasi-3 4 4 3 Quasi-3
Upper-State Lifetime (µs) 960 230 98 10000 600
Absorption CS (10−20cm2) 0.77 67 114 0.48 13.3
Emission CS (10−20cm2) 2.1 28 250 0.22 3

Linewidth (nm) 6 0.45 0.8 400 16
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2.3 Technology

Thin disk lasers are generally very efficient and less prone to problems due to high power or

temperature and demonstrate good power scalability and stable laser output. This section

provides detailed information for several aspects of thin disk laser architecture.

2.3.1 Thermal Management

One of the main problems related to temperature within a gain medium is thermal lensing.

This phenomenon occurs when a temperature gradient is formed within the medium due to

pumping, changing in the index of refraction of the material [42]. Efficiently cooling the gain

medium helps reduce thermal lensing, but it is not sufficient, since pumping and cooling

are done simultaneously. Thermal lensing can disturb cavity stability and reduce efficiency

and beam quality. Rod based lasers use a two dimensional heat conduction mechanism,

producing a parabolic thermal gradient. However, thin disk lasers use a one dimensional

heat conduction mechanism, producing a flat temperature profile [42].

Overheating can also damage intra-cavity optics and coatings. This is especially true in

media with a large quantum defect, in which a large amount of energy is converted into heat

[18]. If the gain medium is able to be maintained below a certain temperature to avoid most

of the thermal effects, then the output power of the laser is proportional to the pump area

[42]. Such is the case for most thin disk lasers.
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2.3.1.1 Cooling Finger

For thin disk lasers, the medium is maintained at a specific temperature by soldering the

disk to a copper heat sink. The disk is soldered using indium or gold-tin foil [43, 44]. A

coolant is pumped at a constant rate extracting the heat from the heat sink. By attaching

the gain medium to the heat sink, a one dimensional heat flux is maintained within the

crystal [29]. Maintaining the disk at a semi constant temperature allows for higher pumping

powers. The cooling apparatus which holds the thin disk is referred to as the cooling finger.

Figure 2.5 shows a simple linear cavity configuration with the cooling finger apparatus.

Figure 2.5: Thin Disk Cooling Configuration

Ehard et al. demonstrated that for thin disk lasers, the optical efficiency increases with a

decrease in termperature [45]. Temperature dependent laser models indicate that Yb:YAG

will work very efficiently at cryogenic temperatures [24]. Yb:YAG operates as a 4-level system

at cryogenic temperatures, allowing efficient operation with relatively low power diodes due

to the diminished laser wavelength reabsorption.
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2.3.2 Pumping

Diode laser are used to pump thin disk lasers. The pumping configuration is different from

other lasers, due to the geometry and size of the disk. This section discusses in detail the

different pumping mechanisms used for thin disk lasers.

2.3.2.1 Multi-Pass Absorption

The geometry of thin disk lasers required an innovative and effective pumping scheme that

took into consideration the absorption of a very thin laser gain medium. To produce popu-

lation inversion, Giesen’s et al. demonstrated an 8-pass absorption technique. A parabolic

mirror is used to image the pump light onto a disk, which is located at the focal position of

a mirror. The pump radiation transverses the disk and reflects from a HR coating on the

back of the disk [29]. The remaining pump light reaches the parabolic mirror and is reflected

back onto the disk to repeat the process.

The initial design was later revised and the number of absorption passes increased from

eight up to 32 by means of using multiple roof prisms (generally three) and a retroreflector.

The roof prisms deviate the pump light which remained after the initial reflections and

allows it to repeat the absorption cycle [46]. Multiple absorption passes allows for a decreased

doping concentration or disk thickness. Also, by having multiple absorption passes, the power

density increases, thus decreasing the threshold power [29]. Even after multiple passes, there
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is still some remaining pump light which is reflected back into the pump diodes, but it is

low in power, so no damage is done to the diodes. The multi-pass absorption scheme can

be seen in Figure 2.6. The number of passes have been reduced in the image for ease of

understanding. Figure 2.6.b shows the multiple absorption passes on the parabolic mirror.

Introducing a mirror after the last pass doubles the amount of passes encountered by the

disk [46].

(a) Front Pumping (b) Multiple passes

Figure 2.6: Thin Disk Multiple Pass Pumping

2.3.2.2 Side Pumping

Side or edge pumping has been demonstrated as another efficient method of pumping high

power thin disk lasers. Absorption of up to 100% is achievable using this technique. For this

pumping mechanism, the disk has a central doped region and an exterior undoped region,
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which acts as a waveguide for incoming pump radiation and dampens generation of amplified

spontaneous emission (ASE) [45]. This geometry is harder to produce and does not produce

a one dimensional heat flow, which leads to possible thermally induced problems.

2.3.2.3 Disk Coatings

To diminish optical losses, the disk has multilayer dielectric AR and HR coatings for both

940 nm and 1030 nm. The AR coating is located in front of the disk, where the light is

incident on the disk. The HR coating is located on the back of the disk, before the heat

sink, and acts like a mirror for both the pump and laser wavelengths.

2.3.2.4 High Power Pumping

To obtain higher powers from thin disk laserswithout exceeding the damage threshold re-

quires increasing the pump spot area and the laser diameter on the disk. However, changing

this pumping area also affects the beam quality of the laser [42]. To obtain very large powers

from a single disk, a large diameter disk is required. This is the case for multi-kilowatt thin

disk lasers using only multiple high power pumps to power one disk. For example, multi-

kilowatt systems (4 kW) using one disk with up to six laser diodes are being produced by

TRUMPF Laser GmbH. Typically disk diameters range from 10 to 20 mm, depending on

the required power [47].

28



www.manaraa.com

2.3.3 Laser Resonator

A linear cavity can be formed by placing an output coupler (OC) in front of the disk.

Similarly, a V-shaped cavity can also be made by placing a HR mirror and an OC on each

arm with the disk at the vertex. The V-cavity provides more space for intracavity optics. By

increasing the cavity length, a higher beam quality can be achieved, with a loss in efficiency

[48]. The length can be increased while maintaining a small footprint by using a V-shaped

cavity. Using other cavity shapes allow for multiple intracavity optics and thin disks to be

introduced. A simple linear cavity was demonstrated in Figure 2.5.
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CHAPTER 3

TRUMPF TRUMICRO 7050 SETUP

This chapter introduces the Trumpf TruMicro 7050 obtained by the EUV group.

3.1 Cavity Design

The cavity layout for the TruMicro 7050 is shown in Figure 3.1. The laser cavity has three

HR flat mirrors, a a thin-film polarizer at Brewster angle, a Pockels cell and quarter wave

plate for cavity dumping, and the disk with the pumping optics. The laser outputs through

the polarizer and is diverted by two mirrors located at the left of Figure 3.1. The system

also has several additional components non included in the layout drawing. Figure 3.2 is a

photo of the actual laser cavity.

3.2 Pumping Scheme

The TruMicro 7050 uses two laser diodes which can generate up to 1.25 kW of optical power

each at 940 nm. The diodes are attached to a base, which is connected to the main laser

breadboard. The light output is fed to the enclosure area through several optics within
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Figure 3.1: Trumpf TruMicro 7050 Cavity Layout

the diode mounting base. The optics homogenize and collimate the pump laser beam. A

parabolic mirror is used to image the pump onto the disk. The pump beam has a diameter

of 6.3 mm at the disk interface. By means of a prisms and the parabolic mirror, the disk

encounters 16 absorption passes. The laser diodes and base can be seen in Figure 3.3.

3.3 Thin Disk Design

The Trumpf TruMicro 7050 uses a 14 mm diameter Yb:YAG thin disk as its gain medium.

The information regarding the thickness and doping concentration of such disk is proprietary

to Trumpf Laser GmbH. The disk itself has a slight curvature of 1 diopter (focal length of

1 m). When the disk is pumped, there is a slight deformation to this curvature. Figure 3.4
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(a) Cavity Top View

(b) Cavity Side View

Figure 3.2: Trumpf TruMicro 7050 Laser Cavity

shows the fluorescence of the disk when feedback is broken and when it permitted in the

system.
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(a) Laser Diodes

(b) Diodes Attached to Base

Figure 3.3: Trumpf TruMicro 7050 Pump Laser Diodes
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(a) Off (b) On

Figure 3.4: Trumpf TruMicro 7050 Disk Fluorescence

3.3.1 Disk Enclosure

The thin disk is enclosed within a protective structure. This enclosure holds the parabolic

mirror which reflects the pump light onto the disk surface and the optics used to increase

the amount of absorption passes. The enclosure has 3 main openings at the back, allowing

for the insertion of the cooling finger with the mounted disk, the pump light optics, and a

sensor. On the front, there are four main apertures, two of which are for the cavity arms,

one for a charge-coupled device to view the disk and one for a disk fluorescence sensor. The

enclosure structure along with some of the connections can be seen in Figure 3.5.

3.3.2 Cooling Finger

The cooling finger that holds the disk and the heat sink within the enclosure is showed in

Figure 3.5b. At the opposite end of the disk, cold water is sprayed against the heat sink to
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(a) Laser Diodes

(b) Diodes Attached to Base

Figure 3.5: Trumpf TruMicro 7050 Pump Laser Diodes
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remove heat and returns through the water connection on top of the module. The cooling

finger allows for slight orientation displacement for alignment purposes.

3.4 Pulse Generation

3.4.1 Cavity Dumping

The TruMicro 7050 generates laser pulses by employing cavity dumping. The laser cavity

uses a Pockels cell (PC) as the optical modulator. Figure 3.6 shows a sample cavity dumping

timing diagram including the PC trigger (square pulse), the intracavity pulse (dashed line)

and the output pulse (solid line). The configuration is such that the PC affects only part

of the intracavity laser pulse. The PC is turned on at the time that the peak of the pulse

interacts within the PC. This changes the polarization of the second half of the pulse. The

last section of the pulse transmits through the polarizer, while the rest remains in the cavity.

Since not all of the energy is expelled as in a standard Q-switched laser, the intracavity

intensity is maintained at a high value. Changing the voltage on the PC affects the polar-

ization, which changes the transmission at the polarizer and, in turn, affects the rise time of

the pulse leaving the resonator [49]. For this reason, the minimum pulse duration is achieved

at the highest voltage allowed for the system, corresponding to near λ/4 voltage on the PC

[22].
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A square wave is used to drive the PC. When the trigger signal is high, the PC is off;

therefore, the polarizer reflectivity is near 100%, so most of the light remains within the

cavity. When the signal is low, the polarization can be varied to expel the laser pulse. The

period of the high voltage signal can be varied to select the pulse repetition rate (from 5-100

kHz), and the level can be tweaked to adjust the pulse duration [49].

!

Figure 3.6: Trumpf TruMicro 7050 Cavity Dumping Timing Diagram

For CW operation, HV is always applied to the PC, whereas this voltage is modulated

in the pulsed regime. To reduce the risk of laser pulse instabilities, the laser is always kept

above lasing threshold.
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3.4.1.1 Optoelectronics

The TruMicro 7050 uses a 10x10 mm2 beta barium borate (BBO) crystal as the Pockels

medium. A high voltage signal is applied to the PC to cause a polarization rotation on the

incoming laser EM wave. Due to the dimensions of the crystal, it requires a current of ∼100

mA to rotate the polarization. At such a high voltage, this current is potentially fatal. The

PC is EM shielded and an interlock prevents a HV discharge if the shield is removed. The

BBO has AR coated windows and is in a dry enclosure. Dry air is pumped to remove any

moisture from the cavity and PC optics. Chilled water is pumped through the PC to remove

any heat. Figure 3.6 shows the TruMicro 7050 Pockels Cell.

Figure 3.7: Trumpf TruMicro 7050 Pockels Cell

A QWP is used to adjust the transmission through the polarizer [22]. This allows for

the laser to operate in CW mode when the PC is off. The QWP can be easily rotated to

tweak the laser pulse to the desired conditions. The PC would require a substantial greater
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HV in order to produce half wave (λ/2) rotation (up to 10.8 kV). Operation at such a high

voltage can produce electrical arching. The QWP induces a phase retardation of π/2 (λ/4)

on the intracavity laser light, reducing the required HV applied to the PC to achieve half

wave rotation.

The cavity has a thin film polarizer (TFP) at Brewster angle, which acts as the output

coupler. When the PC is off, the TFP is highly reflective; therefore, no light is coupled out.

3.4.1.2 Energy Sensor

The TruMicro has a calibrated photodiode located behind the HR mirror next to the po-

larizer. This sensor, once calibrated, is able to detect the intracavity power and provide

feedback in order to control the level of amplification of the gain. This sensor is essential

when the laser is ran in pulsed mode. When pumped and not controlled, Yb:YAG’s long

upperstate lifetime can lead to chaotic pulse behavior. The chaotic behavior or too much

intracavity power can cause damage to the resonator optics. The sensor was calibrated with

the help of the Trumpf scientists in order to ensure safe and regular pulsed operation.
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3.5 System Design

The Trumpf TruMicro 7050 is a self contained system, requiring only a supply of electricity

and chilled water. These requirements and the different systems will be discussed within

this section.

3.5.1 Electrical System

The laser system has a requirement of 5 kW input power for optimum operation. It is able

to operate under the following conditions: 380 ≤ V ≤ 460, 50 ≤ Hz ≤ 60 [50]. The 3-phase

voltage is in wye configuration within the laser system and thus requires around 12A for

stable operation. This input power is sufficient to power all of the demanding components

of the laser including the water pumps, air compressor, main computer, Pockels cell driver,

pump laser diodes, and others. The system has a wall-plug efficiency of 20%.

3.5.2 Control System

The TruMicro 7050 has a built in central processing unit for systems management. It is able

to monitor the water and air pressure throughout the system, electrical power, any scattering

of light, and other anomalies that could lead to damage within the system and shut down
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if necessary. Calibrated diodes and sensors throughout the laser cavity provide the system

with feedback related to laser operation.

The CPU itself can be accessed and operated by means of the laser remote or an externally

interfaced computer. These provide the user with detailed information and diagrams that

promote a safe working condition. It also includes a detailed list of possible and past errors

associated with the laser.

3.5.3 Thermal Managment

The Trumpf laser has a closed loop cooling system using chilled deionized (DI) water. There

are particle filters and deionizers in place to make sure all the water within the laser is clean

and ion free. An external chilled water supply is necessary to chill the DI water within

the laser. At full power, the chiller has a heat load of up to 5.8 kW and must maintain a

temperature between 5◦C and 22◦C [50]. This chilled water is capable of removing more

than the heat load from this laser. Filters were placed in parallel before the laser in the

supply line to minimize the amount of debris that reached the laser.

3.5.4 Humidity Control System

The TruMicro 7050 also has an air cleaner and compressor system. The system cleans the

air, dehumidifies it, and distributes it throughout the laser cavity. This is crucial to the laser
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because any moisture or particles inside of the laser cavity can cause damage. The filters

in place for this system have a lifetime of 5000 hours. The whole air cleaner unit has to be

replaced every 10000 hours [51]. To promote a clean environment for the laser, the EUV lab

is operated as a clean room with HEPA filtration.
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CHAPTER 4

LASER CHARACTERIZATION

The TruMicro 7050 is a versatile system allowing for different operation modes. It yields

up to 808 W in continuous wave (CW) mode and can provide up to 80 mJ in pulsed mode.

Many of the laser parameters can be tweaked to meet certain criteria; however, the amount

of tweaking for some parameters is limited due to the potential of damaging the optics due

to very high intracavity powers.

4.1 Continuous Wave Operation

The initial laser cavity setup consisted of a 91% OC situated after the polarizer. With this

configuration, the laser was able to produce up to 1.31 kW of CW laser light at 100% of

pumping power. To cavity dump the system, a QWP and a PC were placed within the cavity

and the 91% OC was replaced with an HR mirror. This new setup was also characterized,

yielding up to 880 W at 70% of pumping power. Any further increments of the pump laser

diodes could damage the optics.

In order to measure the power output, a multi-kW thermal detector was placed at the end

of the laser. A negative lens was placed to expand the beam so as to diminish the probability
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of damaging the detector. The power output of the laser grew linearly with power. This

power scalability is observed in thin disk lasers due to the lower ratio of pump power being

converted into thermal energy. The slope efficiency for the laser is shown in Figure 4.1. The

plot compares the efficiencies prior to and after the 91% OC change and the PC and QWP

insertion. For the 91% OC configuration, the slope efficiency was 66% and for the HR setup,

the efficiency was 62%.
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Figure 4.1: Trumpf TruMicro 7050 CW Efficiencies

4.1.1 Intracavity Power

To quantify the intracavity power, a sensor was placed after the last cavity mirror. This

small photodiode detects very small amounts of light that leaks from the mirror. The diode

was calibrated in order to obtain accurate measurements. The calibration was done with the

cavity dumping setup, but the last HR mirror was replaced with a 91% OC. Replacing the

44



www.manaraa.com

mirror ensured less light would lase through the polarizer, leading to more accurate readings

after the mirror. The power after the polarizer and after the mirror were measured. Once

the measurements were complete, the intracavity laser power and polarizer output coupling

were derived. The transmissivity of the HR mirror was obtained by using Equation 4.1

TM =
PT
PI

=
PT × 0.09

PL
(4.1)

where PT is the transmitted power after the HR mirror, PI is the intracavity power, PL is

the laser power and 0.09 is the transmissivity of the 91% OC. The average transmissivity

that was obtained from the HR mirror was 0.00246%.

4.1.2 Polarizer Output Coupling

The output coupling, or the transmission of the polarizer, can be calculated by using Equa-

tion 4.2.

TP =
PL
PI

=
PL × TM

PT
(4.2)

For this equation, PI is the intracavity power, PL is the average laser power, PT is the

transmitted power through the HR mirror, and TM was the previously calculated mirror

transmission. The average transmission for the laser at 100 kHz obtained for the polarizer

was around 7.78%. PT changed for different repetition-rates. At 100 kHz, a transmission of

13% was obtained after the HV of the PC was tweaked to obtain smaller pulses.

45



www.manaraa.com

4.2 Pulsed Operation

Pulsed operation was achieved by placing the PC and QWP within the laser cavity. For the

pulsed operation, the 91% OC was replaced by an HR mirror. The polarizer at Brewster

angle acts as the OC in this configuration. This allows the transmission of the horizontally

polarized light and transmission of orthogonally polarized light. This allows the laser to be

cavity dumped.

4.2.1 Energy Output

The TruMicro 7050 is capable of producing pulses with up to 80mJ of energy. Since the laser

is pulsed by means of cavity dumping, most of the energy remains inside the laser cavity.

For the TruMicro, this intracavity energy is enclosed in a pulse of 100 ns. The intracavity

energy is almost ten times greater than that dumped.

The laser was operated at 5 kHz, 10 kHz, and 100 kHz. The maximum safe pump powers

for these frequencies were 55%, 85% and around 70% of the total available diode power,

respectively. Running the laser past these values will cause chaotic behavior and possible

damage to the optics. A plot of the pulse energy versus pump power can be seen in Figure 4.2.

Similar to the power growth, the energy grows linearly with respect to the pump power. The

10 kHz operation had the best combination of energy and power output for the system.
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Figure 4.2: Trumpf TruMicro 7050 Energy Output

4.2.2 Average Power

The laser system produces average powers up to 400 W at 5 kHz and 800 W at 10 and 100

kHz. These correspond to the energy limits for the corresponding frequencies. Figure 4.3

shows the slope efficiency and optical to optical efficiencies for the system during pulsing.

The slope efficiencies for the system were 37.7%, 47.6,% and 53.7% for the 5, 10 and 100

kHz, respectively. The optical to optical efficiencies tend to increase with pump power at

5 kHz and 10 kHz, where they approach 31% and 41%. At 100 kHz, the optical efficiency

reached a maximum of 48% before decreasing. These values are comparably smaller than

the measured values for CW, at which the slope efficiencies were above 60% and the optical-

to-optical efficiencies approached 55%.
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Figure 4.3: Trumpf TruMicro 7050 Pulsed Efficiencies

4.2.3 Pulse Duration

Small changes to the pulse duration were observed as a function of pumping power and gain

in the system. Figure 4.5 shows the pulse durations versus the pump power. The pulse

duration ranged from 30 to 42 ns. As the pump power increased for higher repetition rates,

the pulse duration started to stabilize for the higher repetition rates. At 5 kHz, the pulse

duration was somewhat inconstant.

The TruMicro is capable of producing laser pulses with different pulse durations. To

control the pulse duration of the laser, the high voltage that drives the Pockels cell can be

adjusted. By increasing the HV supply for the Pockels cell, the pulse duration of the laser

pulse can be shortened. Starting the laser near the maximum high voltage caused a fault,

so it was started with the high voltage set at the 60% base level and then increased. The
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Figure 4.4: Trumpf TruMicro 7050 Pulse Duration at Various Frequencies

laser was interfaced by means of using a computer terminal to send the voltages to the laser

processor. If the voltage is too low, there is possibility of chaotic oscillations between pulses.

When voltage was changed, the waveplate orientation was adjusted to optimize the pulse.

The shortest pulse duration was observed as 17.7 ns, while operating the laser at 10 kHz,

30% of input power, and providing 100% HV to the PC. An example of the narrow pulses can

be seen in Figure 4.5. This pulse, generated by operating the laser at a similar configuration

to that aforementioned, had a duration of 18.1 ns.
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Figure 4.5: Trumpf TruMicro 7050 Pulse

4.2.4 Peak Power

Peak power is the measure of the radiated power that is produced by each laser pulse. This

is a relation of energy and pulse duration. The peak power of a pulsed laser can be several

orders of magnitude higher than the power of a CW laser [20]. Figure 4.6 shows the trend of

peak power with respect to pump power. For repetition rates of 5 and 10 kHz, pulses with

peak powers close to 2 MW were observed.

4.3 Beam Quality

Thin disk lasers can yield high powers while maintaining good beam qualities. Near

diffraction-limited thin disk lasers with powers greater than 100 W have been reported [44].

The M2 value is one of several ways to describe the beam quality of a laser. The smaller

the M2 value, the smaller the beam divergence is. Beam divergence is a quantization of
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Figure 4.6: Trumpf TruMicro 7050 Peak Powers

the increase of a laser beam’s size as compared to its waist. The M2 factor is defined in

Equation 4.3, where Θ is the half angle of the beam’s divergence, W0 is the beam radius at

waist (for a multimode beam), and λ is the laser wavelength [18]:

M2 = Θ
W0π

λ
(4.3)

Achieving diffraction-limited beam quality is usually unattainable for most high power

solid-state lasers, which rely on a larger gain medium that is more prone to thermal lensing.

Typically, as the power of the pump and the laser go up, the beam quality of the laser goes

down. Even though thin disk lasers in the kilowatt range have moderate M2 values, their
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beams generally have less divergence than other types of solid-state lasers operating in the

same power range.

Another method to quantify the beam quality is by using the beam parameter product.

This product demonstrates the amount of spatial divergence per the divergence angle. It

can be obtained by using Equation 4.4.

BPP = ΘW0 = M2λ

π
(4.4)

4.3.1 Measurement Technique

The measurement technique used to determine the beam quality can be seen in Figure 4.7.

A high energy dielectric attenuator (CVI Melles Griot, HPDA-1064-3.00-20) was used to

reflect 90% onto a chilled beam dump, the rest was transmitted through the attenuator.

4% of the transmitted light is reflected off the fused silica (quartz) wedge and the rest is

dumped. Neutral density (ND) filters dampen the beam before reaching the focusing lens.

The focusing lens was a plano-convex BK7 lens with a diameter of 50.8 mm and 100 mm

focal length. A 10x microscope objective was used to image the focused beam onto a Spiricon

beam profiler. The beam profiler used for this experiment was the LBA-FW-SCOR20. It has

a spectral response from 350-1320 nm, 1600 x 1200 pixels and can resolve a maximum beam

size of 7 mm x 5.3 mm [52]. Some beam profiles at 20% and 50% are shown in Figure 4.8

and in Figure 4.9.
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Figure 4.7: Trumpf TruMicro 7050 Beam Measurement Technique

The second moment (D4σ) beam size was obtained by using the Spiricon laser beam

analysis (LBA) software. The D4σ beam size is the ISO standard for measuring beam spot

sizes for multimode beams. It describes the beam size as four standard deviations of the

beam intensity distribution. The D4σ for a Gaussian beam (M2=1) is the equivalent of the

1/e2 measurement [53, 54, 55]. The total magnification of the system was calculated by using

a resolution chart to determine an accurate beam size. The lens was shifted to observe the

waist at focus. The data from the waist was used with Equation 4.5 and Equation 4.6 to

determine the Rayleigh range (zR) and M2 [56].

2W (z) = 2W0

[
1 + (z − z0)

2/z2
R

]1/2
(4.5)
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zR =
πW 2

0

λM2
(4.6)

The TruMicro 7050’s was determined to be, on average, 10.97 times diffraction-limited.

The M2 value incremented with pump power due to an increased number of modes that

lased reaching a maximum value of 14 times diffraction-limited.. The BPP was calculated

using Equation 4.4 to be 3.60 mm*mrad on average and 4.59 mm*mrad as the maximum.

By using Equation 4.3, the divergence angle, Θ, was calculated to be 71.19 mrad.

Figure 4.8 and Figure 4.9 show the far field beam profiles of the Trumpf laser system

at different operations (CW and pulsed). Multimode operation is observed throughout all

of the different operations. The beams had an average radius of 50 µm. The differences

between the different repetition-rates and powers were minimal.

4.4 Spectral Characterization

The TruMicro 7050 emission spectrum was observed for CW and pulsed operation. This was

done due to Yb:YAG’s large bandwidth and the lack of a spectral fixation on the system

could produce spectral drift. The Ocean Optics HR4000CG, a ultraviolet to near-infrared

(UV-NIR) spectrometer with a 0.75 nm FWHM resolution was used for these measurements.

The average center wavelength was 1030.6 nm. The center wavelength drift was ±350 pm

with a minimum of 1030.3 nm and 1031 nm as the maximum. The linewidth generally

increased with pump power from a minimum of 0.7 nm to a maximum of 2.69 nm, with an

average of 1.78 nm.
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(a) CW (b) 5 kHz

(c) 10 kHz (d) 100 kHz

Figure 4.8: Trumpf TruMicro 7050 Far-Field Beam Profiles at 20% Pump Power

4.5 Laser Intensity

4.5.1 Brightness

The measure of optical power per given area can be described in two ways: the brightness

and the radiance of the laser. Focusing the laser beam does not change the brightness of
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(a) CW (b) 5 kHz

(c) 10 kHz (d) 100 kHz

Figure 4.9: Trumpf TruMicro 7050 Far-Field Beam Profiles at 50% Pump Power

such laser [18]. It is a quantity which can be calculated using the equation

B =
P

AΩ
=

(
P

λ2

)
(4.7)

, where A = (πW 2
0 ), Ω = (πΘ2), and Θ = M2λ/πW0 [18]. This yields a value of 6.9 × 108

W/cm2sr as the maximum brightness for CW operation, when the power reaches 880 W.
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4.5.2 Intensity

The intensity of the laser, also called radiance, quantifies the power over a given area. This

unit can be changed by focusing the laser beam by means of a converging lens. The laser

intensity can be calculated using the equation

I =
Ppeak
A

=
E

Aτ
(4.8)

, where Ppeak is the peak power, E is the pulse energy, A is the beam area and τ is the pulse

duration. Using this equation, a maximum intensity of 2.56 × 1010 W/cm2 was calculated

(at 5 kHz, 55% of input power; E = 76.8 mJ, τ = 40 ns).

This measure is very crucial to the development of EUV. For efficient EUV generation, a

radiance of at least 1.5-2 x 1011 W/cm2 is required. Having a value too low will not produce

the desired plasma temperature and a value too high will increase the level of debris in

the system. Using a telescope to expand the beam so as to cover the entire lens will yield a

smaller divergence and hence a smaller beam waist. This process will yield a higher intensity

(∼ 6× 1011 W/cm2) when the beam is increased from ∼10 mm to 50 mm. Achieving such a

high intensity from such setup gives the possibility of using a longer focal length lens (larger

beam size at focus) to achieve the necessary intensity for EUV. Using the focusing element

at a longer distance diminishes the debris at the lens and promotes a longer lifetime.
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4.6 Improvements

In order to improve the beam quality without reducing the output power, several changes

can be made to the laser cavity. These include extending the length of the folding arm and

changing some of the planar HR mirrors with some curved HR mirrors. Initial calculations

performed by Trumpf and CREOL scientists modeled that using curved mirrors with radii

of 2-5 meters would yield a better beam quality.

4.6.1 Damage Thresholds

If some of the cavity parameters are changed, it is important to remember the damage

threshold of the intracavity optics, since these experience a greater fluence than those outside

the cavity. The damage threshold for the disk itself is approximately 5 J/cm2, for the PC

and QWP it is 10 J/cm2 and for the mirrors it is 30 J/cm2. Since the intracavity folding

mirror is exposed to light traveling in both directions in the cavity, its threshold is half of

the mentioned value.
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CHAPTER 5

LASER MODELING

5.1 LASCAD

The laser models performed for this thesis were done with LASCAD. This software allows

the user to design a laser cavity and provides information such as resonator stability, output

power, energy, pulse duration, beam profile, and thermal effects. LASCAD provides the

user with four tools: Finite Element Analysis, Laser Power CW, Beam Propagation, and

Dynamic Multimode Analysis. Each of these components will be discussed in further detail.

A current limitation in the software is that the Beam Propagation and the Dynamic Multi-

mode Analysis only work for 4-level systems, such as Nd:YAG. Since Yb:YAG is a Quasi-3

level system, these algorithms will not create valid results.

The laser resonator can be designed on the main screen, which has a section to incorporate

the optics and observe the fundamental mode propagation. Each of the optical components’

properties can be specified. Some of these properties include radius of curvature, size, angle

of incidence, index of refraction, aperture size, and location. It is able to generate the

beam size for the fundamental mode throughout the cavity. LASCAD uses the laser ABCD

matrices to compute the beam propagation throughout the laser cavity [57]. Based on these
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calculations, it is able to determine the stability criterion and provide information to the

user, including a stability curve. LASCAD is able to adapt the stability curve to changes in

the cavity design in real time. More information regarding laser resonator stability can be

found in Section 2.1.2.

5.1.1 Finite Element Analysis

The Finite Element Analysis, FEA, computes the heat and stress induced characteristics

of the laser system. This code can be run after the designed laser resonator is within

the stability limits. The FEA has several input types, such as the laser gain material,

the pumping scheme and the cooling mechanism. The software allows for the selection of

gain media type, size, geometry and crystal configuration. LASCAD provides data files

for several materials, such as Nd:YAG, Nd:YVO4, Nd:YLF, Yb:YAG and Yb:KGW. The

different properties of each can be changed within the FEA GUI (doping concentration,

index of refraction, thermal conductivity, etc.). The FEA is also able to generate results for

a laser gain crystal with doped and undoped regions [58]. For the pumping scenario, the

pump spot size, location, divergence, symmetry and power can be declared. The cooling

method and reference temperature for the laser can also be established. FEA allows for fluid

or contact cooling.

The code discretizes the crystal into a 3 dimensional grid and iterates through these a

defined amount of times. Running the FEA generates the data used for simulating thermal
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lensing within the laser cavity. It also produces three dimensional representations of the

crystal heat load, temperature and stress. The FEA relies on equations which describe heat

conduction, structural deformation and absorption [59]. The rest of the algorithms within

LASCAD depend on the results from the FEA to generate results.

5.1.2 Laser Power CW

The Laser Power algorithm provides an accurate representation of what the laser output

power for a given cavity configuration. This code depends on the pump wavelength, pump

power, the output mirror reflectivity (output coupling), mode operation, and the results from

the FEA code. The user has the capability of changing these values, as well as to choose

or ignore intracavity apertures, to obtain the desired laser modes and power. This code

generates the output power with respect to the input power with a constant output coupling

or the output power with respect to the input output coupling with a constant input power.

The Laser Power algorithm uses Laser Rate Equations to provide the power data. These

equations can be simplified into the relation which describes output power for various inputs.

The power can be obtained using the equation

Pout = hνLSL
c(−ln(Rout))

2L
(5.1)
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, in which h is Planck’s constant, c is the speed of light in vacuum, νL is the laser light

frequency, Rout is the OC reflectivity, L is the optical path length, and SL = τcηpSp is the

total number of lasing photons [60]. By further expanding this equation and adding a crystal

volume dependence, a more accurate result is obtained. When considering a Quasi-3 level

system, the equation expands into

Pout =
hcTM
λLTT

∫ ∫ ∫
a

qσηpλpPpp0/(hc)− (qσ − 1)Nt/τ

qσ + hcTM

Pout(SGR+SGL)στλL

dV (5.2)

, in which λl is the laser wavelength, Pp is the pump power, λp is the pump wavelength, ηp is

the pump efficiency, τ is the spontaneous lifetime, T ’s are the cavity losses , and qσ = 1+ σa

σe
,

where σa and σe are the absorption and emission cross section, respectively [60].

5.1.3 Beam Propagation

The Beam Propagation Method, BPM, algorithm develops three dimensional intensity and

phase intensity profiles for the beam as it propagates through the laser cavity. The code is

able to take into account the interference and diffraction effects from intracavity apertures

and the thermal lens within the crystal. BPM uses a FFT Split-Step Beam Propagation

Method to perform these computations [61]. The beam shape, which can be seen in a

three dimensional contour map, will fluctuate as it encounters the different optics or suffers

from diffraction effects within the cavity throughout several iterations. It is also capable of
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demonstrating multimode laser operation. It provides the user with the flexibility of selecting

any point in the map to determine the intensity value.

5.1.4 Dynamic Multimode Analysis

The Dynamic Multimode Analysis, DMA, is the last piece of code that is part of LASCAD to

completely model and characterize a possible laser system. This code deals with multimode

operation and the time domain characteristics of the laser. It is able to generate laser pulses

and provide information such as pulse duration and energy for such pulses. It also generates

time dependent M2 values and upper energy level population for the laser medium. The DMA

provides the user with many variables which can be tweaked to meet the laser requirements.

This code uses the data from the FEA and from the eigenmodes from the ABCD matrices

to perform its analysis by means of time dependent multimode laser rate equations [62].

5.2 Design

5.2.1 Cavity Layout

The Trumpf TruMicro laser cavity was modeled using LASCAD. Since the model was op-

erated in the CW regime, some changes were done to simplify the cavity. A flat mirror

was placed instead of the polarizer and a curved mirror was placed behind the thin disk, to
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account for the curvature of the disk and the HR coatings at the end surface of the disk. The

OC had a reflectivity of 91%. The layout of this simplified cavity can be seen in Figure 5.1.

9.6º 

16º 

OC 

HR 

HR 

HR 

345 mm 

555 mm 

465 mm 

40 mm 

HR 

Yb:YAG 

Figure 5.1: LASCAD Cavity Configuration

5.2.2 Pumping Technique

The Finite Element Analysis involves many laser gain and pumping parameters, ranging from

size and geometry to different coefficients. In order to properly use the FEA, the pumping

and disk geometry were introduced, as provided from Trumpf, with several assumptions.

The pumping power was set to the maximum of 2250 W, with a spot radius of 3150 µm and

a top hat beam profile. A disk thickness of 200 µm was used, with a diameter of 14mm.

Since Yb:YAG is a Quasi-3 level system, it was set as a 3 level material in the FEA. The
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heat sink was cooled to a temperature of 343.15 K. The absorption of the Yb:YAG, which

would be affected by a different doping concentration, was not changed for the simulation.

The thermal conductivity was 0.014 W/mmK, the thermal expansion coefficient was 7×10−6

K−1, the index of refraction was 1.82 and the doping concentration was ∼ 5%.

5.3 Results

5.3.1 Finite Element Analysis

LASCAD is able to efficiently model the thermal effects that the laser gain media encounters

during pumping. Figure 5.2 and Figure 5.3 represent the results of the thermal and structural

computations performed by the FEA code. As it can be noted, outside the central area where

the pump spot directly affects the disk, the heat load, temperature and stress are minimal

due to the efficient temperature handling of the disk and heat sink. The disk temperature

variation ranges from 343.1 K in the outer area to 404.7 K within the pump area. The

exterior area has a higher heat load of 0 W/mm2 while the interior has a heat load of 43.05

W/mm2. The lowest stress intensity occurred at the edges, with a value of 8.704 N/mm2,

and the highest occurred at the center, with 98.96 N/mm2. The von Mises equivalent stress

demonstrated a similar pattern with the limits being 8.3 N/mm2 at the edges and 98.32

N/mm2 at the center of the disk.
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(a) Heat Load

(b) Temperature

Figure 5.2: Thin Disk Thermal Visualizations
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(a) Stress Intensity

(b) Von Mises Stress

Figure 5.3: Thin Disk Structural Effects Visualizations
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5.3.2 Laser Power CW

The results for the Laser Power for the Trumpf Laser proved to be accurate. The slope

efficiency for the measured Trumpf laser power values was 66.1%, while the slope efficiency

for the LASCAD simulated multimode laser power values was 73.6%. The optical effciencies

for the measured values approached 58%, while the LASCAD simulation approached 62%.

The following plots represent the measured and simulated outputs for the laser power and

for the optical to optical efficiency.
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Figure 5.4: Measured vs Simulated Efficiencies
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CHAPTER 6

CONCLUSION

Thin disk lasers have been established as a predominant laser technology offering low

divergence at high power. These lasers have efficient cooling mechanisms which diminishes

most of the thermally induced problems associated with the degradation of the beam quality.

This makes them more versatile than other solid state lasers, especially at higher powers.

100-200 µm thin disk crystals are soldered directly onto a heat sink and act as mirrors for

both the pump and laser radiation. Yb:YAG remains as the predominant gain medium for

thin disk lasers due to YAG’s capability to be doped with a high concentration of Yb ions.

This high doping concentration is necessary to achieve substantial gain in the thin gain

medium. Yb:YAG’s small QD means that there is less heat produced from non-radiative

decay.

The initial characterization of the recently acquired thin disk laser was performed at

Schramberg and the final characterization at CREOL. The pulse duration was observed

with a fast photodiode and an oscilloscope. A beam profiler was used for the far-field

characterization of the laser to determine the beam quality and intensity. The spectral

emission of the laser was characterized using a near-IR spectrometer to determine stability.
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Simulations from LASCAD provided an in depth perspective of the thermal and stress

effects induced in the gain media of the laser cavity during pumping and lasing. Thin disk

modeling demonstrated the thermal and stress effects induced on the gain media by pumping

and lasing mechanisms. A top hat thermal gradient was observed, which leads to a decreased

thermal lensing. This simulation will be useful to observe laser cavity optimization for this

laser system.

6.1 Future Work

In the near future, this laser will be used to perform high power EUV source development

experiments at high repetition rates of up to 100 kHz. The laser and the LPL EUV droplet

system will be synchronized at a high repetition rate to conduct these tests. Another aspect

to be explored will be the effect of the laser pulse duration on laser plasma stability and

conversion efficiency. Previous tests demonstrate conversion efficiencies of over 2% with

pulse durations of 20-30 ns. The TruMicro 7050’s pulse duration adaptability will be used

to explore the conversion efficiencies for various pulse durations and energies to determine

an optimum operation.

The models that were performed using LASCAD will be used to determine if the beam

quality and power can be enhanced by laser cavity modifications. The simulations will be

updated when LASCAD provides support to Quasi-3 level systems and cavity dumping. The

new version should provide more insight of the temporal characteristics of the laser and how

they will be affected by changing the laser resonator.
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[19] F. Träger, Springer Handbook of Lasers and Optics. Springer, 2007.

[20] F. McClung and R. Hellwarth, “Giant Optical Pulsations from Ruby,” Journal of Ap-
plied Physics, vol. 33, no. 3, pp. 828–829, 1962.

[21] R. Paschotta, Encyclopedia of Laser Physics and Technology, 1st ed. Wiley-VCH
Verlag GmbH & Co., 2008.

[22] C. Stolzenburg, A. Voss, T. Graf, M. Larionov, and A. Giesen, “Advanced pulsed thin
disk laser sources,” Proceedings of SPIE, vol. 6871, 2008.

[23] W. Hook, R. Dishington, and R. Hilberg, “Laser Cavity Dumping Using Time Variable
Reflection,” Applied Physics Letters, vol. 9, no. 3, 1966.

[24] J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross
section and lifetime on temperature and concentration in yittrium aluminum garnet,”
Journal Of The Optical Society of America B Optical Physics, vol. 20, pp. 1975–1979,
2003.

[25] W. Martin and J. Chernoch, “Multiple internal reflection face-pumped laser,” Patent
3,633,126, January, 1972.

[26] J. Eggleston, T. Kane, K. Kuhn, J. Unternahrer, and R. Byer, “The Slab Geometry
Laser - Part I: Theory,” IEEE Journal of Quantum Electronics, vol. QE-20(3), pp.
289–300, 1984.

[27] E. Snitzer, “Proposed Fiber Cavities for Optical Masers,” Journal of Applied Optics,
vol. 32, no. 1, pp. 36–39, 1961.

[28] J. Almasi and W. Martin, “Face-Pumped, Face-Cooled Laser Device,” Patent 3,631,362,
December, 1971.

[29] A. Giesen, H. H, A. Voss, K. Wittig, and et al., “Diode-Pumped High-Power Solid-State
Laser: Concept and First Results with Yb:YAG,” in OSA Proceedings on Advanced
Solid-State Lasers, vol. 20, 1994, pp. 91–94.

[30] I. Johannsen, S. Erhard, D. Müller, C. Stewen, A. Giesen, and K. Contag, “Nd:YAG
thin disk laser,” Advanved Solid State Lasers, vol. 34, pp. 137–143, 2000.

74



www.manaraa.com

[31] J. Gao, M. Larionov, J. Speiser, and A. G. et al., “Nd:YVO4 Thin Disk Laser with 5.8
Watts Output Power at 914nm,” 2002, pp. 175–176.

[32] N. Berner, A. Diening, E. Heumann, G. Huber, and et al, “Tm:YAG: A Comparison be-
tween endpumped Laser-rods and the ’Thin-Disk’-Setup,” Advanced Solid State Lasers,
vol. 26, pp. 463–467, 1999.

[33] M. Larionov, J. Gao, S. Erhard, A. Giesen, and et al, “Thin Disk Laser Operation and
Spectroscopic Characterization of Yb-doped Sesquioxides and Potassium Tungstates,”
Advanced Solid State Lasers, vol. 50, pp. 625–631, 2001.

[34] M. Fox, Optical Properties of Solids. Oxford University Press, 2001.

[35] H.-Y. Lin, J. Guo, D.-Y. Ning, S.-W. Wang, and H.-M. Tan, “LD end-pumped intracav-
ity frequency doubled Yb:YAG laser,” Optics Communications, vol. 281, pp. 6065–6067,
2008.

[36] W. T. Silfvast, Fundamentals of Lasers, 2nd ed. Cambridge University Press, 2004.

[37] K. Petermann, G. Huber, L. Fornasiero, S. Kuch, and et al., “Rare-earth-doped sesquiox-
ides,” Journal of Luminescence, vol. 87-89, pp. 973–975, 2000.

[38] E. Kanchanavaleerat, D. Cochet-Muchy, M. Kokta, J. Stone-Sundberg, and P. S. et al.,
“Crystal growth of high doped Nd:YAG,” Optical Materials, vol. 26, pp. 337–341, 2004.

[39] X. Xu, Z. Zhao, P. Song, J. Xu, and P. Deng, “Growth of high-quality single crystal
of 50 at.% Yb:YAG and its spectral properties,” Journal of Alloys and Compunds, vol.
364, pp. 311–314, 2006.

[40] M. Larionov, J. Gao, S. Erhard, A. Giesen, and et al., “Thin Disk Laser Operation and
Spectroscopic Characterization of Yb-doped Sesquioxides and Potassium Tungstates,”
in OSA TOPS on Advanced Solid-State Lasers, vol. 50, 2001, pp. 625–631.

[41] A. Demidovich, A. Kuzmin, G. Ryabstev, M. Danailov, W. Strek, and A. Titov, “In-
fluence of Yb concentration of Yb:KYW laser properties,” Journal of Alloys and Com-
punds, vol. 300-301, pp. 238–241, 2000.

[42] A. Killi, I. Zawischa, D. Sutter, J. Kleinbauer, and et al., “Current status and develop-
ment trends of disk laser technology,” Proceedings of SPIE, vol. 6871, 2008.

[43] A. Giesen, U. Brauch, I. Johannsen, M. Karszewski, and et al., “High-Power Near
Diffraction-Limited and Single-Frequency Operation of Yb:YAG Thin Disc Laser,” in
OSA TOPS on Advanced Solid-State Lasers, vol. 1, 1996, pp. 11–13.

[44] A. Giesen, “Thin Disk Lasers: Power scalability and beam quality,” Laser Technik
Journal, no. 2, pp. 42–45, 2005.

75



www.manaraa.com

[45] S. Erhard, M. Karszewski, C. Stewen, A.Giesen, K. Contag, and A. Voss, “Pumping
schemes for multi-kw thin disk lasers,” in OSA TOPS on Advanced Solid-State Lasers,
vol. 34, 2000, pp. 78–84.

[46] S. Erhard, A.Giesen, M. Karszewski, T. Rupp, and et al., “Novel Pump Design of
Yb:YAG Thin Disc Laser for Operation at Room Temperature with Improved Effi-
ciency,” in OSA TOPS on Advanced Solid-State Lasers, vol. 26, 1999, pp. 38–44.
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